The NOvA Experiment

Users Meeting 2017

Kanika Sachdev

June 08, 2017

* Neutrino oscillation are a firmly established Beyond Standard Model phenomenon

* Hierarchy of neutrino mass states:

Normal or Inverted?

* Flavor content of ν_3 : is θ_{23} maximal ie $\pi/4$?

* Is CP violated by neutrinos: do neutrinos and anti-neutrinos oscillate differently?

- * NOvA (NuMI Off-axis $\nu_{\rm e}$ Appearance) is a neutrino oscillation experiment
 - * Baseline of 810 km
 - * NuMI, beam of mostly ν_{μ}
 - * 14 mrad off-axis from the beam

- * NOvA (NuMI Off-axis ν_e Appearance) is a neutrino oscillation experiment
 - * Baseline of 810 km
 - * NuMI, beam of mostly ν_{μ}
 - * 14 mrad off-axis from the beam
 - * Two functionally identical detectors

‡ Fermilab

- * NOvA (NuMI Off-axis ν_e Appearance) is a neutrino oscillation experiment
 - Baseline of 810 km
 - * NuMI, beam of mostly ν_{μ}
 - * 14 mrad off-axis from the beam
 - * Two functionally identical detectors
- Scillation channels accessible to NOvA:
 - * $\nu_{\mu}(\bar{\nu}_{\mu})$ to $\nu_{\mu}(\bar{\nu}_{\mu})$ (disappearance)
 - * $\nu_{\mu}(\bar{\nu}_{\mu})$ to $\nu_{\rm e}(\bar{\nu}_{\rm e})$ (appearance)

\$ Fermilab

- * NOvA (NuMI Off-axis ν_e Appearance) is a neutrino oscillation experiment
 - Baseline of 810 km
 - * NuMI, beam of mostly ν_{μ}
 - * 14 mrad off-axis from the beam
 - * Two functionally identical detectors
- Scillation channels accessible to NOvA:
 - * $\nu_{\mu}(\bar{\nu}_{\mu})$ to $\nu_{\mu}(\bar{\nu}_{\mu})$ (disappearance)
 - * $\nu_{\mu}(\bar{\nu}_{\mu})$ to $\nu_{\rm e}(\bar{\nu}_{\rm e})$ (appearance)
 - Sterile neutrino search
 - Cross-section measurements, supernovae, search for BSM phenomena etc

- * Full detector equivalent exposure: 6.05 × 10²⁰ POT
- * More than double the exposure of the 2015 analyses
- * Excellent beam!

- * Hit 700 kW earlier this year, running routinely around 650 kW these days
- * Currently running in anti-neutrino mode, since February 2017

- * Full detector equivalent exposure: 6.05 × 10²⁰ POT
- * More than double the exposure of the 2015 analyses
- * Excellent beam!

- * FD has recorded 93% of the delivered POT over all time
- * Currently operating at 98% efficiency

- Composed of PVC modules extruded to form long tube-like cells: 15 m long in FD, 4 m ND
- * Each cell is filled with liquid scintillator
- * Optical fiber loop carries scintillation light to a pixel on an Avalanche Photo Diode (APD)
- Cells arranged in planes, with alternating planes perpendicular in orientation
- * Detectors are 65% active

- * Low-Z material, each plane samples ~ 0.18 radiation-lengths
- * Molière radius is ~ 10 cm, 2.5 NOvA cells

- * Low-Z material, each plane samples ~ 0.18 radiation-lengths
- * Molière radius is ~ 10 cm, 2.5 NOvA cells

- * FD is on the surface, 14 kT mass and has > 344,000 channels
- st Trigger window is 500 μ s, neutrino spill only lasts 10 μ s

- * FD is on the surface, 14 kT mass and has > 344,000 channels
- * Trigger window is 500 μ s, neutrino spill only lasts 10 μ s

- * FD is on the surface, 14 kT mass and has > 344,000 channels
- st Trigger window is 500 μ s, neutrino spill only lasts 10 μ s

Near Detector Data

- * ND is 100 m underground
 - * Has 0.3 kT mass and > 20,000 channels

Oscillation Analyses

- * We use ND data to predict the oscillated spectra in the FD
- * Both disappearance $(\nu_{\mu} \to \nu_{\mu})$ and appearance $(\nu_{\mu} \to \nu_{\rm e})$ analyses start with ν_{μ} 's in ND

- * We use ND data to predict the oscillated spectra in the FD
- * Both disappearance $(\nu_{\mu} \to \nu_{\mu})$ and appearance $(\nu_{\mu} \to \nu_{\rm e})$ analyses start with ν_{μ} 's in ND

 u_{μ} Disappearance Analysis

* Requires identification of ν_{μ}

* Requires energy reconstruction

Combine input variables in a k-Nearest Neighbor algorithm ν_μ selection purity of 95% and efficiency of 81%

Combine input variables in a k-Nearest Neighbor algorithm ν_μ selection purity of 95% and efficiency of 81%

- * Muon energy reconstructed from range with resolution \sim 3%
- * Hadronic system: $\sum_{cell} E_{visible} \implies E_{had}$, resolution $\sim 20\%$
- * Neutrino energy is the sum of the two
- * Energy resolution ~ 7% at beam peak

- * Muon energy reconstructed from range with resolution \sim 3%
- * Hadronic system: $\sum_{cell} E_{visible} \implies E_{had}$, resolution $\sim 20\%$
- * Neutrino energy is the sum of the two
- * Energy resolution ~ 7% at beam peak

Performance in the ND shows good data-MC agreement after simulation tuned to include nucleon-correlation effects, with input from our data and Minerva

- Expected 473 events, observe 78 events
- Estimated background of 3.7 events from beam and 2.9 from cosmics
- st Fit for Δm_{32}^2 and $\sin^2 heta_{23}$

* Best fit at 68% CL (NH):

$$\begin{split} \Delta m_{32}^2 = & (2.67 \pm 0.11) \times 10^{-3} \ \mathrm{eV}^2 \\ \sin^2 \theta_{23} = & 0.404^{+0.030}_{-0.022} \\ or & 0.624^{+0.022}_{-0.030} \end{split}$$

- * Fit $\chi^2 = 41.6/17$
- * Rejection of maximal mixing at 2.6 σ

* Best fit at 68% CL (NH):

$$\begin{split} \Delta m_{32}^2 = & (2.67 \pm 0.11) \times 10^{-3} \ \mathrm{eV}^2 \\ \sin^2 \theta_{23} = & 0.404^{+0.030}_{-0.022} \\ or & 0.624^{+0.022}_{-0.030} \end{split}$$

* Fit
$$\chi^2 = 41.6/17$$

* Rejection of maximal mixing at 2.6 σ

* Phys. Rev. Lett. 118, 151802 - Published 10 April 2017- Editors' Suggestion!

* Best fit at 68% CL (NH):

$$\begin{split} \Delta m_{32}^2 = & (2.67 \pm 0.11) \times 10^{-3} \ \mathrm{eV}^2 \\ \sin^2 \theta_{23} = & 0.404^{+0.030}_{-0.022} \\ & \text{or } 0.624^{+0.022}_{-0.030} \end{split}$$

- * Fit $\chi^2 = 41.6/17$
- * Rejection of maximal mixing at 2.6 σ
- * Phys. Rev. Lett. 118, 151802 Published 10 April 2017- Editors' Suggestion!
- * Higher statistic analysis with 50% more POT coming by Fall 2017

 $\nu_{\rm e}$ Appearance Analysis

- st Leading order term in $P(
 u_{\mu}
 ightarrow
 u_{e}) \propto \sin^{2} \theta_{23}$
- * Other terms depend on $\delta_{\it CP}$ and mass hierarchy
- * Cause enhancement or suppression in $P(\nu_{\mu} \rightarrow \nu_{\rm e})$ as large as 30%
- * Hierarchy and CP have the opposite effects on ν and $\bar{\nu}$

- st Use u_{μ} CC in ND to estimate $u_{\rm e}$ appearance signal in FD
- st Use $u_{
 m e}$ PID in ND to estimate backgrounds (NC, beam $u_{
 m e}$ CC and u_{μ} CC)
- * Extrapolate backgrounds to the FD for a complete prediction
- * Fit the ν_e appearance spectrum to extract oscillation parameters

- * CVN: Convolutional Visual Network, a deep neural netowork
- * Input is the NOvA event display (pixel map)
- * Each layer perform convolutions to extract abstract features

- * CVN: Convolutional Visual Network, a deep neural netowork
- * Input is the NOvA event display (pixel map)
- * Each layer perform convolutions to extract abstract features

- * Select ν_e CC interactions with 73% efficiency and 76% purity
- * Most left over backgrounds have an energetic EM shower in them
- * Equivalent to 30% increase in exposure compared to more conventional PIDs
- * Presents good data-MC agreement in ND

Kanika Sachdev 25/34

- * Select ν_e CC interactions with 73% efficiency and 76% purity
- * Most left over backgrounds have an energetic EM shower in them
- * Equivalent to 30% increase in exposure compared to more conventional PIDs
- * Presents good data-MC agreement in ND
- * Analysis done in 4 energy bins in each of 3 PID bins

Kanika Sachdev 25/34

- * $\nu_{\rm P}$ CC selection selects 10% more events in ND data than in simulation
- * Use data driven methods to estimate what fraction in data is NC, beam $\nu_{\rm e}$ CC and ν_{μ} CC
- * Extrapolate these adjustments to the FD for more realistic background estimates

Kanika Sachdev 25/3

Background	Estimate
Total Bg	8.2
NC	3.7
Beam $ u_{\mathrm{e}}$ CC	3.1
$ u_{\mu}$ CC	0.7
$ u_{ au}$ CC	0.1
Cosmic	0.5

Expect \sim 19 and \sim 36 events in total, in two most extreme oscillation scenarios (at maximal mixing)

Kanika Sachdev 26/34

Observe 33 events

 $> 8\sigma$ significance of ν_e appearance

Kanika Sachdev 26/3

- \star Joint fit of $\nu_{\rm e}$ appearance data and ν_{μ} disappearance data from NOvA
- * Constrain $\sin^2 2\theta_{13} = 0.085 \pm 0.005$, reactor average value
- * Systematics included as nuisance parameters and correlated properly between ν_{μ} and $\nu_{\rm e}$ in the fit
- Contours include Feldman-Cousins corrections

Kanika Sachdev 27/3

* Two statistically degenerate best fit points are in Normal Hierarchy

$$\sin^2 \theta_{23} = 0.404, \delta_{CP} = 1.48\pi$$
 , and $\sin^2 \theta_{23} = 0.623, \delta_{CP} = 0.74\pi$

* The best-fit point in the Inverted Hierarchy near $\delta_{CP}=3\pi/2$, 0.46 σ from the global best-fit points

Kanika Sachdev 28/3

- * Inverted Mass Hierarchy in the lower θ_{23} octant disfavored at > 93% C.L. for all values of δ_{CP}
- Phys. Rev. Lett. 118, 231801 : Editors' Suggestion!

Kanika Sachdev 28/3

Future

Kanika Sachdev 29/34

- Hierarchy and CP have opposite effects on anti-neutrinos
- NuMI switched to anti-neutrino mode in February 2017
- * Plan to collect ν and $\bar{\nu}$ data in 50-50 ratio
- Will help resolve some of the degeneracies

- * Hierarchy and CP have opposite effects on anti-neutrinos
- NuMI switched to anti-neutrino mode in February 2017
- * Plan to collect ν and $\bar{\nu}$ data in 50-50 ratio

Will help resolve some of the degeneracies

Projected significance of rejecting maximal mixing, wrong hierarchy, wrong octant and CP conservation

- Improvements in suppressing systematics
- 25% gain in exposure from **improved analysis**
- * 40 weeks of beam starting 2018
 - PIP 1+: 800 kW in 2019, 900 kW in 2021 + target improvements

Projected significance of rejecting maximal mixing, wrong hierarchy, wrong octant and CP conservation

- Improvements in suppressing systematics
- 25% gain in exposure from improved analysis
- * 40 weeks of beam starting 2018
 - PIP 1+: 800 kW in 2019, 900 kW in 2021 + target improvements

- * NOvA has analyzed 6.05 \times 10²⁰ POT worth of neutrino data
- * The measurement of ν_{μ} disappearance at NOvA is **non-maximal at 2.6** σ
- * A combined fit of appearance and disappearance channels **rejects Inverted Hierarchy with lower** θ_{23} **octant for all values of** δ_{CP} at > 93% CL
- * Here's what's coming soon:
 - * Higher stats analysis of ν_{μ} disappearance this Fall, improved precision of θ_{23} measurement
 - Currently running in anti-neutrinos, should help break the degeneracy between upper and lower octant
 - * Combined $\nu = \bar{\nu}$ result scheduled for Summer 2018

- * With improvements across **analysis**, **detector operation and beam** we have an opportunity to hit **major milestones** in neutrino physics before 2024
- * 5 σ rejection of maximal mixing
- * 3 σ mass **hierarchy** determination
- * 3σ octant determination
- * 2 σ sensitivity to **CP violation**

Backup

- * The hadornic energy spectrum in ND Data suggests missing interaction mode in simulation
- Supported by observations by Minerva experiment ^a
- * Use GENIE's Meson Exchange Current to model these interactions of neutrinos scattering off correlated pair of nucleons b

^bS. Dytman, based on J. W. Lightbody, J. S. OConnell, Comp. in Phys. 2 (1988) 57

^aP.A. Rodrigues et al. (MINERvA Collaboration) Phys. Rev. Lett. 116, 071802

* Tuned the default MEC model by fitting the data excess in bins of hadronic energy and momentum transfer

* Tuned the default MEC model by fitting the data excess in bins of hadronic energy and momentum transfer

* Tuned the default MEC model by fitting the data excess in bins of hadronic energy and momentum transfer

- * To predict oscillated spectra in FD, both, appearance and disappearance analyses start with selecting ν_μ CC interactions in ND
- * The reconstructed ND ν_{μ} CC energy spectrum is used to correct the FD simulated prediction

Cosmic rejection BDT based on muon direction, position, length, number of hits in slice and energy

Rejection factor of 10⁷ achieved with event topology

Final background measured directly from beam-off FD data

- * Most systematics are negligible in F/N ratio
- * Including MEC in simulation reduces hadronic energy systematic
- * Systematics included as pull terms in the fit
- * Table quotes increase in 68% contours relative to stat-only fit

	Uncertainty in	Uncertainty in
Source of uncertainty	$\sin^2\theta_{23}(\times 10^{-3})$	$\Delta m_{32}^2 \; (\times 10^{-6} \; \text{eV}^2)$
Absolute muon energy scale [±2%]	+9 / -8	+3 / -10
Relative muon energy scale $[\pm 2\%]$	+9 / -9	+23 / -14
Absolute hadronic energy scale $[\pm 5\%]$	+5 / -5	+7 / -3
Relative hadronic energy scale $[\pm 5\%]$	+10 / -11	+29 / -19
Normalization [$\pm 5\%$]	+5 / -5	+4 / -8
Cross sections and final state interactions	+3 / -3	+12 / -15
Neutrino flux	+1 / -2	+4 / -7
Beam background normalization [$\pm 100\%$]	+3 / -6	+10 / -16
Scintillation model	+4 / -3	+2 / -5
$\delta_{\mathrm{CP}} \left[0 - 2 \pi ight]$	+0.2 / -0.3	+10 / -9
Total systematic uncertainty	+17 / -19	+50 / -47
Statistical uncertainty	+21 / -23	+93 / -99

- * $\chi^2 = 41.6/17$ driven by fluctuations in the tail
- Restricting the fit upto 2.5 GeV causes minimal change in the result

- * Systematic error \sim 5% on signal and \sim 10% on background
- * Systematic shifts to the PID \times Energy spectrum included as nuisance parameters in the fit

* Dominated by statistical error

* Beam $\nu_{\rm e}$'s at NOvA's location mostly arise from muon decay in beamline

- st Beam $u_{
 m e}$'s at NOvA's location mostly arise from muon decay in beamline
- * At low energy, ν_{μ} 's and beam $\nu_{\rm e}$'s come from common pion parents, at higher energy, the parents are Kaons
- st Pion and Kaon yields are derived from the observed low and high energy u_{μ} data

- st Beam $u_{
 m e}$'s at NOvA's location mostly arise from muon decay in beamline
- * At low energy, ν_{μ} 's and beam $\nu_{\rm e}$'s come from common pion parents, at higher energy, the parents are Kaons
- st Pion and Kaon yields are derived from the observed low and high energy u_{μ} data
- Infer that Kaon yield is higher by 17% and Pion yield lower by 3%
- st Leads to 1% increase in Beam $\nu_{\rm e}$ background between 1-3 GeV in ND

- \star Look for Michels electron associated with interactions selected with $\nu_{\rm e}$ criteria
- $*~
 u_{\mu}$ CC's should have 1 additional Michel electron than NC and $u_{\rm e}$ CC's
- * Fitting the number of Michels distribution suggests an integrated increase of 17.4% in ν_{μ} CC and 10.4% in NC backgrounds

- Fitting a simple counting experiment
- * $0.05 \text{ eV}^2 < \Delta m_{41}^2 < 0.5$ eV^2
- PDG2016 constraints on 3-flavor oscillation parameters
- * 68% and 90% CL limits for 3+1 hypothesis

- Currently there is no information about the vertical axis
- * NuMI switched to anti-neutrino mode in February 2017
- Plan to run 50% in neutrino and 50% in anti-neutrino mode in 2018
- * Will help resolve some of the degeneracies

- Currently there is no information about the vertical axis
- NuMI switched to anti-neutrino mode in February 2017
- Plan to run 50% in neutrino and 50% in anti-neutrino mode in 2018
- Will help resolve some of the degeneracies

- * Look for reduction in rate of NC, due to oscillation to sterile neutrinos
- * Select NC interactions in ND
- * Extrapolate to FD

- * Using CVN to select NC
- * Shows reasonable agreement between data and MC
- * No NC MEC model available at the time led to large uncertainties

Event Type	Count
Total	83.5
NC	60.6
$ u_{\mu}$ CC	4.6
Beam $ u_{e}$ CC	3.6
$ u_{ au}$ CC	0.4
Cosmics	14.3

- * Systematic uncertainties considered are similar to the $\nu_{\rm e}$ appearance and ν_{μ} disappearance analyses
- 12.2% systematic error on signal and15.3% on background
- Predicted event counts in table computed for maximal mixing

$$R = \frac{N_{data} - \sum N_{pred}^{bg}}{N_{pred}^{NC}}$$

- Observe 95 events on an expectation of 83
- * The R statistic is $1.19 \pm 0.16 \text{ (stat.)}_{0.14}^{0.10} \text{ (syst.)}$
- * Measured value of R fully consistent with 3-flavor mixing